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I began this little exercise as a challenge; I had recently created a single
spreadsheet  that duplicated Garrison's calculations for six (Hex) sided bamboo
rods, and thought it would be easy to modify the math for four (Quad) and five
(Penta) sided rods as well.  The geometry involved in calculating the volume,
weight, and moments of inertia for the Quad and Penta was nothing more than
straight forward trigonometry.  The resulting stress curves looked good and made
it fairly easy, although not automatic, to convert Hex rod tapers to Quad and
Penta version.

After distributing the spreadsheet to a few people to try out, Bob Maulucci  told
me that he had found by experience that the taper dimensions on a Quad
needed to be in the neighborhood of 90% to 93% of the Hex taper dimensions to
have the same "feel" when casting.  When I looked closely at the spreadsheet
math, I could see that the Quad was actually thicker, flat to flat, than the Hex it
was trying to match.  Obviously, there was a problem in the stress calculations.

I obtained a copy of "Roark's Formulas for Stress & Strain", 6th ed., by Warren C.
Young, published in 1989 by McGraw-Hill.  I discovered that stress is related not
only to the cross-sectional area but also to the distance of the outermost fibers
from the centerline of the object.

The next thing I did was to try to replicate Garrison's factors using the equations
in Young's book.

Garrison's equations for stress are:

D = (M/(.120 x f)1/3

where  D = flat to flat dimension
M = total moment
f = stress

Rearranging terms,

f = M/(.120 x D3)

which is the same as the general form of the stress equation in Young.  Next, I
confirmed Garrison's calculations.



Bending stress, 
σ = MC
        I

where C is 1/2 D
M is total moment
I = A(6P1
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Reducing A,
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     σ =  12MD                      =  12M                           = 8.3138M      =  M
 5 (.86603D2) a2            5(.86003D3)(1/3)   D3 0.12028 D3

Which is very close to Garrison's factor; Since Garrison was using slide rules and
hand calculators to do his calculations, it's not surprising he rounded off the
factor from 0.12028 to 0.120.

Based on the equations in Young, the stress calculation for a Quad is much
simpler than for a Hex.  For bending stress

σ = MC
         I

where C is again D/2



I = a4

      12

and  a = D = 2C

∴  σ = Ma   =   12Ma     =  6M    =  M
2 I     2 a4      a3 0.16667a3

The Penta calculations are a bit more complex.

I =  A(6P1
2 - a2)

24

where A =   5a2                  Since α = 36°,   A =   1.72048a2

        4 Tan α

P1  =     a              =   a
2 Sin α         1.17557

P2  =     a              =   a
2 Tan α         1.45309

C is the distance from the center to the farthest point, so    C = P1 should
be correct; however Young offers another equation for the distance of the
farthest fiber from the center when n (number of sides) is odd:

y1 = p1 cos   α (n+1) - π/2       which yields   y1 = C = 0.809017 a
   2

and define D as the flat to apex distance, which is      D = P1   +  P2

Substituting yields

I =    1.72048 a2[6 a            2  -  a2 ]    =   0.23955 a4

    24           2Sin α

Since D = P1   +  P2   = 1.53884 a,

  I  =  0.23955 a4   =   0.296101 a3

C       0.809017 a



Substituting D for a will then yield

  I   = (0.296101)D3    =    0.081256 D3

  C      (1.53884)3

∴  σ =     M
0.081256D3

Some correspondence with Bob Nunley revealed that he usually made his Quads
with the natural rounding of the bamboo culm left in place.    In other words,
instead of a perfectly square cross-section, his Quads were more of a "rounded
square".  If the above formula for a Quad was used to convert a specific Hex
taper, it would not be exactly correct using the rounded square method.  This is
because the rounded square has a bit less fibers at the outer limit than does the
perfect square, so the fibers that were there would see more stress than
expected.

D

Perfect square Rounded Square

What I needed to do was to find or figure out the formulas to make a rounded
square equivalent to a perfect square.  Obviously, the flat to flat dimension, D,
would need to be bigger on the rounded square.  Young provides formulas for a
shape called Segment of Solid Circle.
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This is the shape of each rounded area that is added to a square in a rounded
square (height of rounded area increased for visual emphasis).

The areas on each side use centroid 2 and y2, while the top and bottom
segments use centroid 1 and y1a and y1b.  Young’s equations are

A =  2R2α2(1-.2α2 + 0.019α4)
       3

where R is the culm radius
α is half the angle subtended by the segment

y1a = 0.3Rα2(1 – 0.0976α2 + 0.0028α4)

y1b = 0.2Rα2(1 – 0.0619α2 + 0.0027α4)

y2 = Rα(1 – 0.1667α2 + 0.0083α4)

Inner square area = (2Y2)
2

I1 = 0.01143R4α7(1-0.3491α2 + 0.0450α4)

I2 = 0.1333R4α5(1-0.4762α2 + 0.1111α4)

Iinner square = a4    =  (2Y2)
4

σ 12

C = Y2 + Y1a + Y1b

For a starting point, I have assumed that the average culm is a 2 inch diameter
(R = 1), although it does make a difference which will be explained later.
Selecting a station with a strip width of 0.215, the circumference (ΠD) is dividing



by this width to determine the exact number of strips that could be made from a 2
inch culm (29.2 in this case).    This is divided into 360° to determine α.

α =  360            =  6.159°   = 0.1075 radians
       (2 x 29.2)

Using the Quad equations above,

I = 0.000178063      C =  0.1075

From the Stress Spreadsheet, the total Moment applied on a Hex rod at this
station is 160.6404999, so the stress at this station is

σ =  MC   =   160.64 x 0.1075   = 96981
I 0.000178

The actual stress from the spreadsheet for the Hex rod is 97735.  The Quad
stress could be made closer in value to the Hex by going to more significant
digits  for the station dimension, but a dimension of 0.214963 is not practical to
achieve, so the 96981 is considered “close enough.”

Substituting into the formulas above yields

Y1a = 0.003462978
Y1b = 0.002309605
Y1 = 0.005772583
Y2 = 0.107294101
2*Y2 = 0.214588201
I1 = 1.88865E-09
I2 = 1.90319E-06

Calculating the combined I for the two side pieces and the square is easy: it’s
merely the sum of the individual Moments for the two sides and the square.  I
was not able to determine an exact value for the combination of the top and
bottom segments plus the square.  So far in this analysis, I have not had to
“cheat” and make any assumptions; all formulas have been exact and correct.
The way I have handled this is to determine the centroid for the top segment
(bottom is equivalent), and add that value to the inner square, thereby converting
the combined area to a rectangle.  The centroid of the top segment is a distance
Y1b above the square.  The rectangle therefore has sides  (2Y2) and (2Y2 + 2Y1b).

Young’s formula for I for a rectangle is

I =   bh3

        12



where b = rectangle base, and h = rectangle height.

Substituting values yields

Irect = 2Y2(2Y2 + 2Y1b)     = 0.000188361
             12

and Itotal is therefore Irect + 2I2 = 0.000192167

C (the distance from the center to the farthest fiber) is also changed

Crounded = Y2 + Y1a + Y1b  = 0.113066683

The stress is therefore

σ = MC   =  160.64 x 0.11307   =  94517
        I    0.0001884

Which is less stress than the perfect square Quad or the Hex, implying a stiffer
action.  Looking at the individual segment calculations, I2 has significantly more
impact on the total than does I1, which implies that my assumption of rectangle is
not very close; in other words, intuitively, the top and bottom rounded areas
should have much more influence on the stress than the two side rounded areas.

As a check on my assumption, I can use an approximation formula.  Young
mentions on p. 61, “A closely approximate formula…for the section modulus I/C
of any solid section of compact form (e.g., approximately square, circular,
triangular, or trapezoidal) is

 I  =  A2   
 C     6.15b

Where A is the area and

b is the maximum width of the section

Using this formula, stress is

σ =  MC   =  160.64 x 6.15 x 0.22613  =  91720
I 0.049353242

which is a bit lower stress than either the perfect square Quad or the Hex.  An
error in both of the rounded Quad stress calculations above is my assumption
that the Total Moment is the same for the rounded square Quad as the perfect
square quad.  As an example, when the stress curves for the Hex and the perfect
square Quad are matched, the flat to flat dimensions are 0.244 and 0.215,



respectively; the total moments applied are 170.77 and 160.64, respectively.
Cross-sectional areas for the Hex and perfect square Quad are 0.5156 and
0.4935, respectively, which is an 11.5% increase in area, and the increase in
total moment is 6.3%.  Since the rounded Quad has 6.8% more cross-sectional
area, it can be assumed that the total moment will also be higher than that of the
perfect square.   An increase in the rounded Quad moment of only  3% would
change the stress from  to 94517 to 97353.

When the flat to flat dimension of the rounded Quad is compared to the flat to flat
dimension for the perfect square Quad, the numbers are 0.2261 and 0.215,
respectively. To make sure my calculations were responding at smaller taper
dimension, I checked all calculations using station 20;  Hex flat to flat is 0.123,
perfect square Quad is 0.110, and rounded Quad is 0.113, providing stresses of
124602, 124869, and 123037, respectively.

 My conclusion is that a rounded Quad can be made to have the same stress
curve as a perfect square Quad by making the rounded Quad taper 5% greater
at station 60, 2.5% greater at station 20, and this percentage tapering linearly
over the entire rod.  The rod stress spreadsheet has a section added where this
is accomplished automatically;  by adjusting a perfect square Quad taper to
match stress curves with a Hex rod taper, the spreadsheet will calculate a
rounded Quad taper as well.

Some recent discussions on the Rodmakers list about hollow-built rods made me
curious about the stress implications.  Young has the following equations for
hollow beams:

Hollow Quads:

A= ao
2 – ai

2

where ao is the length of an outer side
ai is the length of an inner side

I = (ao
4 – ai

4)
12

Since C = D/2, and  a = 2C,  stress for a hollow Quad becomes

σ  = MC  =   Ma  =       12Ma        =    6MD
        I   2I 2(ao

4 - ai
4 )      (ao

4 - ai
4 )

In the spreadsheet model, Garrison's factor X2 is the "average" area of the
rod cross section, therefore



σ  =    6MD
       (X2 - ai

2 )

and it's easy to see that if the inner area is set to zero (no hollow), the equation
matches the previous equations for a perfect Quad.

For hollow Penta and Hex shapes, Young's formulas are

A = nat( 1- (t tanα)/a)

p1 = a/(2 sin α)

p2 = a/(2 tan α)

where a is a flat width
α is  360°/(2 n)
n is number of sides
t is wall thickness

If n is odd, y1 = y2 = C = p1 cos (α ((n+1)/2) - π/2)

if n/2 is odd, y1 = p1, y2 = p2

if n/2 is even, y1 = p2, y2 = p1

I = na3t/8( 1/3 + 1      )[1 – 3 t tanα   + 4((t tanα)/a)2 –2((t tanα)/a)3]
 tan2 α    a

Making appropriate substitutions,  the Hollow Penta stress equations  condense
to

  I = 0.72678 D2 t [1 - 3.3541 t + 5 t2  -  2.79509 t3 ]
C        D D2   D3

and stress is therefore

σ = MC  =                               M
I  0.72678 D2 t [1 - 3.3541 t + 5 t2  -  2.79509 t3 ]

   D    D2         D3

As a check, I set   t = p2 , which means the thickness is the same as the strip,
and therefore there is no hollow.  The equation factors down to the same values
as the solid Penta equations earlier.



For the hollow Hex equations, the appropriate substitutions yields

            I = 0.96225 D2 t [1 - 3 t + 4 t2  -  2 t3 ]
C  D D2      D3

and stress is therefore

σ  = MC  =                       M
I 0.96225 D2 t [1 - 3 t + 4 t2  -  2 t3 ]

      D     D2      D3

This equation also matches the solid Hex equation  when I set t = D/2 to make
the walls thick enough there is no hollow.


