
Deflection Computation in Hexrod

Frank Stetzer

Last update: April 16, 2020

1 Backgroud

I have been playing around with deflection analysis of split cane rods for a couple of years. My
goal was to include the method in Hexrod, so the its users have another option to evaluate rod
tapers and design new tapers based on previous tapers, similar to the way new tapers can be
created by manipulating stress curves. But I have no engineering background, and reading the
textbooks and literature usually resulted in more questions than answers. The consensus (by no
means unanimous) is that a cane rod can be modeled as a tapered cantilever beam, but beyond
that what you should assume is open to debate.

In November 2019 Henk Verhaar shared on the Classic Fly Rod Forum a link to an undergrad-
uate honors thesis by Bennett Scully, containing an interative algorithm to solve the deflection
formulas for a cane rod under a static load, i.e. a weight suspended from the tip. I jumped on this
right away, rewrote the algorithm in Perl (my language for quick and dirty calculations), and be-
gan to experiment with it. I reported some of my results back to the Forum. This paper describes
how I extended and implemented Scully’s algorithm in Hexrod. I do not include any examples
here; you can run your own in Hexrod.

2 Static Deflection of a Cantilever Beam

Static deflection of a cantilever beam is a major topic is mechanical engineering textbooks. In the
simplest case, the beam is horizontal, has no deflection due to its own weight, and is deflected
only by weight at a single point, such as the end. If this weight is small, the deflection of the free
end of the beam is only a small amount, perhaps one percent of its length. Under the assumption
that the beam is of uniform cross section throughout its length, the curvature of the beam is at
its maximum at the fixed end and zero at its free end. Under all these restrictions, and given the
stiffness (Modulus of Elasticity) of the material, the deflection and curvature at any point along
the beam is readily calculated. This is called Small Deflection Theory.

When the beam is like a fly rod, however, the solution becomes more complicated. The deflec-
tion of the rod is no longer small, and it is tapered with a specific taper from butt to tip. Under
these circumstances, called Large Deflection Theory, there is no longer a simple solution. Formula
for beams subject to large deflections are quite complex, involving systems of nonlinear differen-
tial equations, and the taper adds to the complexity: we can no longer be certain the maximum
curvature to be at the fixed end.

3 Scully’s Algorithm for Static Deflection

The derivation of Scully’s algorithm is described on pages 11-13 of his thesis.

1

Scully actually derives two algorithms, one based on large deflection theory for a cantilever
beam, and the other based on small deflection theory. On the face of it, you would expect the first
to be more appropriate for a beam like a fly rod, since small deflection theory assumes that the
deflection is only a tiny percent of the beam length. After comparing computer solutions to actual
rod deflection however, Scully determines that his small deflection algorithm gives results closer
to the actual deflected rod than the alternative. (More on this in section 10.2) This algorithm
depends on treating the rod as a set of small intervals, computing the small theory deflection of
each, and accumulating the results.

Figure 1: Small deflection diagram

Figure 2: Large deflection diagram

4 Scully’s Algorithm for Static Deflection

4.1 Notation

I am assuming customary U.S. measurements here: inches, pounds, etc.

A minor bookkeeping headache in implementing the deflection calculations in Hexrod was
the need to move smoothly between normal rodmaker accounting and Scully’s model. In rod-

2

maker laccounting, taper dimensions, ferrule locations etc. are located by distance from the rod
tip. If we define a vector of dimensions, e.g. DIM[I], the index I begins at 0 inches (the tip)
and ends at the top of the grip, what Hexrod calls the action length AL inches, for a total of AL+1
measurements. Scully’s notation does not follow this convention, so care must be taken in going
between the two.

1. His algorithm defines the action length as 1 and divides it into N-1 segments of length
DS=1/(N-1). He uses the value N=100 in his calculations, which typically makes the seg-
ment less than an inch in length; these are numbered from 1 (the segment just above the
grip), to N-1 at the tip. (See section 10.1)

2. The N end points of each segment he calls nodes (no relation to our nodes).

3. The X and Y deflection, the angle and curvature will be computed at each node; call these
XDEF[I], YDEF[I], THETA[I], and CURV[I]. (XDEF[I],YDEF[I]) is the coordinate of
deflected rod at node I; the coordinate of the node at the grip is (0,0) and in a perfectly
straight undeflected rod, the coordinate of the tip is (1,0). As the rod deflects XDEF be-
comes smaller and YDEF becomes negative. The angle at that node THETA[I] is in radians
and CURV[I] measures the sharpness of the deflection curve at that point. For units of
curvature refer to an engineering text; the tighter the curve the higher the curvature.

4. In addition we will need the Modulus of Elasticity of bamboo, which Scully sets to
MoE=5,988,000 psi, the Moment of Inertia (stiffness) of a solid hexagonal beam segment,
MoI[I]=0.0601407*DIM[I]**4 at node I , and the force (weight) P in pounds sus-
pended from the tip. DIM[I] is the rod dimension at node I in inches.

4.2 Pseudocode

If we consider a rod being bent by a weight at the tip, and the weight is suddenly reduced, we
can imagine the rod oscillating back and forth between too much deflection and too little until it
comes to a new equilibrium. This is a crude analogy to Scully’s algorithm. It has an equation for
CURV in term of XDEF, and two for XDEF and YDEF in terms of CURV, which alternate until the
oscillation stops, as determined by the vertical tip deflection YDEF[N]. Here is the algorithm:

** Number of nodes used by Scully in his examples
N = 100

** set Modulus of elasticity for Tonkin cane
MoE = 5988000

** compute Moment of Inertia for hexagonal beam
for I = 1 to N-1

MoI[I] = 0.0601407 * DIM[I]**4
end

** Angle at the very first node (at the grip) is fixed at zero
THETA[1] = 0

** The weight in pounds suspended from the rod tip
P = 0.05

** Length of a segment
DS = 1 / (N-1)

3

** TOL is the desired tolerance for ending the iterations;

** here 0.1 vertical inches at the tip
TOL = 0.1
CHANGE_TOL = 2 * TOL

** Initial tip deflection to start iteration;

** any number greater than CHANGE_TOL
OLD_TIP = 1

** Initial cantilever beam shape (no deflection)
for I = 1 to N

XDEF[I] = I * DS
YDEF[I] = 0

end

** This is the loop which iterates until the beam reaches equilibrium

while CHANGE_TIP > TOL

for I = 1 to N-1
CURV[I] = P * (XDEF[N] - XDEF[I]) / (MoE * MoI[I])

end

for I = 2 to N
THETA[I] = CURV[I] * DS + THETA[I-1]
XDEF[I] = XDEF[I-1] + DS * cos(THETA[I-1])
YDEF[I] = YDEF[I-1] - DS * sin(THETA[I-1])

end

NEW_TIP = YDEF[N]
CHANGE_TIP = 100 * abs((NEW_TIP - OLD_TIP) / OLD_TIP)
OLD_TIP = NEW_TIP

** end of the while loop
end

4.3 Implementation & Testing

I coded the algorithm in Perl, with these changes:

1. Reasoning that you would not want the number of nodes N to be a constant regardless of
rod (action) length, I made it a function of length: N=(AL+1) * INCREMENT DIVISOR. I
ended up using INCREMENT DIVISOR=5 in Hexrod. This makes the segments 0.2 inches in
length, which is probably much smaller than necessary. The size of the segment does make
a slight difference in the resulting deflection and curvature. More on this below in section
10.1.

2. Another change was to define DS=(AL+1)/N to make inches the units of deflection and
curvature.

3. I set the default value MoE=5,300,000 psi which is more reasonable in my judgment. This
can be changed within Hexrod if desired.

4

I tested the program with a variety of different rod tapers and weights P. The tapers needed to be
interpolated from one-inch stations to 0.2 inch stations, and the vector reversed to go from I=1 at
the rod grip to I=N at the tip. What I found was, for many tapers, the algorithm would not con-
verge if the weight P was too large. If you look at the graphs of deflection curves Scully includes
in his thesis, all the deflections quite modest. I suspect he had difficulty getting the algorithm to
converge as well. Henk Verhaar reported similar problems.

The convergence problem manifested itself by the deflection oscillating between very high
and very low values. If you keep count of the iterations (executions of the while block), even
numbered iterations have too little deflection and odd numbered too much, and they do not want
to converge to the middle.

5 Improved Algorithm

5.1 Solving the convergence problem

I wondered if this convergence problem might be overcome if the deflection (actually the cur-
vature) was given a little nudge away from the extreme values. This led me to modifying the
algorithm as follows (after much experimentation):

1. Define a constant ACCEL for the degree of convergence acceleration (nudge). Start with
ACCEL=0.3.

2. Define a vector CURV OLD of length N with initial values 0

3. Add an iteration counter ITER, starting at 1 for the first time through the while loop

4. After the first for loop, which calculated a new CURV vector

(a) If ITER is odd, caclulate a CURV NEW vector which is the just computed CURV reduced
by a factor of ACCEL. So initially, this is a 30% reduction.

(b) if ITER is even, CURV NEW is increased by a factor of ACCEL

5. CURV NEW replaces vector CURV and CURV OLD

6. The second for loop which calculates XDEF, YDEF, and THETA is executed, and the while
loop repeats with a test for convergence

7. If the iteration count reaches 50 without convergence, ACCEL is increased to 0.4 and the
entire procedure repeated.

8. If iteration count again reaches 50, ACCEL is set to 0.5 and the procedure is repeated

9. If convergence is still not achieved, the procedure is abandoned without deflection being
computed

The values of ACCEL and the maximum iterations of 50 were determined by experimenting with
different tapers and different weights P. In general, the heavier the weight, the higher the value if
ACCEL and the more iterations necessary for convergence.

5

5.2 Pseudocode

This algorithm allows the successful computation of deflection for much larger forces P than
Scully’s original algorithm. Here is the pseudocode. I admit I got lazy and used a goto. So sue
me :-).

** set Modulus of elasticity for cane
MoE = 5300000

** compute Moment of Inertia for hexagonal beam
for I = 1 to N-1
MoI[I] = 0.0601407 * DIM[I]**4

end

** Angle of the very first segment (at the grip) is fixed at zero
THETA[1] = 0

** Number of nodes
INCREMENT_DIVISOR = 5
N = (AL + 1) * INCREMENT_DIVISOR

** The weight in pounds suspended from the rod tip
P = 0.05

** Length of a segment
DS = 1 / (N-1)

** TOL is the desired tolerace for ending the iterations;

** here 0.1 vertical inches at the tip
TOL = 0.1
CHANGE_TOL = 2 * TOL

** ACCEL is the proportion reduction or increase in curvature to aid

** or speed convergence
ACCEL = 0.30

** this is the place we return to with a larger ACCEL

** if convergence not achieved
label NEW_ACCEL

** Initial tip deflection to start iteration;

** any number greater than CHANGE_TOL
OLD_TIP = 1

** Initial cantilever beam shape (no deflection)
for I = 1 to N

XDEF[I] = I * DS
YDEF[I] = 0
CURV_OLD[I] = 0

end

** This is the loop which iterates until the beam reaches equilibrium
ITER = 0

6

while CHANGE_TIP > TOL

ITER = ITER + 1
for I = 1 to N-1

CURV[I] = P * (XDEF[N] - XDEF[I]) / (MoE * MoI[I])
end

** these loops adjust the curvature values back toward the middle,

** depending on whether the iteration is odd or even
if (odd(ITER)) then
for I = 1 to N-1

CURV[I] = CURV[I] - ACCEL * (CURV[I] - CURV_OLD[I])
CURV_OLD[I] = CURV[I]

end
else if (even(ITER)) then

for I = 1 to N-1
CURV[I] = CURV[I] + ACCEL * (CURV[I] - CURV_OLD[I])
CURV_OLD[I] = CURV[I]

end
end if

for I = 2 to N
THETA[I] = CURV[I] * DS + THETA[I-1]
XDEF[I] = XDEF[I-1] + DS * cos(THETA[I-1])
YDEF[I] = YDEF[I-1] - DS * sin(THETA[I-1])

end

** now test whether the iterative loop has converged after 50 iterations

** if not, increase ACCEL by 0.1 and restart the procedure
if (ITER = 50) then

if (ACCEL < 0.5) then
ACCEL = ACCEL + 0.1
goto NEW_ACCEL

end if
else then

** convergence has failed; do whatever is appropriate and
die

end if

NEW_TIP = YDEF[N]
CHANGE_TIP = 100 * abs((NEW_TIP - OLD_TIP) / OLD_TIP)
OLD_TIP = NEW_TIP

** end of the while loop
end

5.3 Implementation and testing

The new algorithm solved the convergence problem for all reasonable tapers and deflection weights
that I tried. For problems with small weights where the original algorithm worked, the conver-
gence was quicker and the answers were the same.

7

There are a couple of small items which you will have to address if you want to implement
this algorithm.

1. The algorithm computes the curvature for nodes I=1..N-1. For a cantilever beam, the
curvature at I=N (the rod tip) is by definition 0 so you can fill in this value.

2. The algorithm computes the XDEF and YDEF and angle THETA vectors for I=2..N. I added
the the values at I=1 (the rod grip or start of the action) by linear projection from the values
at points I=2,3.

3. The user is probably not interested in the deflection and curvature at all 400+ points used in
the algorithm, so these must be interpolated back to the one-inch stations used by Hexrod in
its graphs, tables, etc. Since this turned out to be a common operation, I wrote two subrou-
tines. VECTOR INTERP interpolates from a shorter (coarser) vector (such as dimensions at 1
inch stations) to a longer (finer) vector used in the deflection algorithm. VECTOR UNINTERP
reverses the process, going from the long vector back to the shorter. These subroutines (and
one more) are used again in the next algorithm. Remember that the vectors used in the
algorithm are indexed opposite of the usual rod maker customs, and begin at N=1 not 0.

6 Utility of Static Deflection

Static deflection only involves the rod taper and the weight at the tip. It is the theoretical equiva-
lent of the traditional deflection board, where the actual rod is mounted horizontally by the grip,
a known weight is suspended from the tip and the resulting deflection is traced onto paper. It
is also similar to the Common Cents system used to describe rod actions. It does not include the
obvious deflection inducing factor of the weight of the rod with its bamboo, ferrules, guides and
varnish. It certainly does not include the forces of casting a line.

It seems to me that the primary utility of static deflection would be in characterizing a rod, by
developing some rules which translate the deflection numbers, curvature and angles into things
like rod speed and action. Similarly, it might prove useful in comparing tapers to each other. An-
other use might be in guide location.

The algorithm is easily modified to accommodate different rod geometries and hollowed rods
simply by changing the formula for MoI[I]. These are implemented in Hexrod.

7 Moving Beyond Static Deflection

for I = 1 to N-1
CURV[I] = P * (XDEF[N] - XDEF[I]) / (MoE * MoI[I])

end

If we look at the above snippet from the static deflection algorithm (and we’ve skimmed an engi-
neering textbook) we might recognize the equation for curvature at node I as the moment of force
divided by the flexural rigidity. The moment of force term includes only the weight at the tip P
and the horizontal distance of station I from the deflected tip N. The traditional formula for rod
stress, due to Garisson, includes several more weights: the weight of the line beyond the tip is
similar to P in that it is “hung from the tip,” the weights of the bamboo, varnish and guides, and
line in the guides are all distributed along the rod in some way, and the weight of the ferrules
is incorporated at particular stations. In addition, there is the “impact factor,” which Garrison

8

included as the weight multiplier due to the motion of casting and estimated to be 4.0; it is equiv-
alent to the more modern concept of g-force.

It is a small modification to the algorithm to include these weights and produce what I call in
Hexrod the casting deflection. I hesitated calling it dynamic deflection since it only includes one
dynamic component, the g-force, and ignores many others: the complex input of forces by the
caster throughout the cast, including things like different casting strokes and line haul, the chang-
ing angle of the line to the rod tip, air resistance, and so forth.

7.1 Implementation

Define the vector WEIGHT[I] to contain the sum of all the weights on the segment from node I to
I+1. WEIGHT[N] contains the weight of the line beyond the rod tip only. Other segments contain
the weights of the bamboo, varnish and guides, line in the guides, and any ferrule. Let G be the
desired g-force, which can be any reasonable value from 1 (just the weight of the components
with no casting force) on up, with 4 being a reasonable default. The curvature is now computed
as

for I = 1 to N-1
MOMENT = 0
for J = I+1 to N

MOMENT = MOMENT + G * WEIGHT[J] * (XDEF[J] - XDEF[I])
end
CURV[I] = MOMENT / (MoE * MoI[I])

end

The rest of the algorithm stays the same.

A couple small points on the calculation of the WEIGHT vector. The units are in pounds, not
ounces as in usual stress calculations, to cancel units with the denominator value of MoE in psi.
And the weights cannot be just interpolated from inches to the algorithm units, but spread so the
total remains the same. I wrote another subroutine SPREAD VECTOR to aid in this.

8 Utility of Casting Deflection

IMHO casting deflection provides a much more useful deflection solution than static deflection.
These are some of its benefits:

1. The curvature vector can be transformed into stress values by multiplying each element by
MoE in ounces and 0.5 times the rod dimension DIM[I]. Unlike Garrison’s stress numbers,
these values account for the deflection of the rod. They tend to show lower stress overall
(since the deflected rod is shorter) and stress shifted from the tip area toward the butt, where
the angle THETA is lower. By increasing the g-force impact factor, you can approach the sort
of stress curve that Milward found by working backward from high speed photography
(R.E.Milward, 2010, pp 124-8)

2. Just as with stress calculations, it is possible to start with a deflection (the vectors XDEF and
CURV) and derive the taper. This opens up the possibility of modifying some characteristic
of the rod (length, line weight etc.) and finding a new taper with the same deflection. The
implementation of this is in the next section.

3. It also opens the possibility of modifying the deflection and deriving a new taper, or hol-
lowing and deriving a taper. These are not yet implemented in Hexrod but are anticipated.

9

4. The basic approach can be expanded to include more sophisticated elements, for example
the stiffness of ferrules compared to cane and the angle of the line to the rod (see Visner
(2007)). These seem to bring the deflected stress curve close to what Milward derived using
high speed photography.

Casting deflection is may be less practical in comparing tapers than static deflection, just because
of the number of weight components which must be comparable. But we do not yet have the
body of collective experience with deflection that we have with Garrison stress curves. We do not
know its long term utility.

9 Derive a New Taper

Deriving a taper from deflection involves reversing the formulas of the algorithm. Again it is an
iterative process, this time recalculating the weight vector. As a taper is calculated, the weight of
the bamboo will change and possibly the size of the ferrules. This affects the weights along the
rod so that the taper must be calculated again. This iteration continues until the taper ceases to
change. It seems to take only 2-4 passes.

9.1 Pseudocode

This pseudocode gives a rough idea of how Hexrod derives a new taper. It leaves out the steps of
(re)calculating the weight vector. Bear in mind that the DIM vector in the algorithm has N nodes,
interpolated from the rod makers one-inch stations.

** start with a dummy DIM_NEW vector, say all zeros

** iterate until the dimensions change by less than 0.0002 inches at any station
while (max_difference(DIM, DIM_NEW) >= 0.0002)

** these are vectors, equated element by element
DIM = DIM_NEW

** calculate new dimension vector
for I = 1 to N-1
MOMENT = 0
for J = I+1 to N

MOMENT = MOMENT + G * WEIGHT[J] * (XDEF[J] - XDEF[I])
end
FR = 0.0601407 * CURV[I] * MoE
DIM_NEW[I] = (MOMENT / FR)**(1/4)
end

** calculate new weight vector from new dimension vector
WEIGHT = weight_calc(DIM_NEW)

** end of while loop
end while

DIM = DIM_NEW

10

9.2 Modifying the rod

Of course deriving the same taper you started with is not that exciting. Here is how Hexrod
implements changing the original rod and deriving a new taper with the same deflection.

1. Changing weights. To change line size, length of line cast, or the number, location or type
of ferrules, you need simply to change the weight vector to reflect the new rod. The derived
taper will have the same deflection as the original. Be sure to check for changing ferrule
sizes, which can change their contribution to the WEIGHT vector.

2. Changing geometry. To change from a Hexagonal rod, you must change the constant
0.0601407 to the appropriate value, for example 0.083333 for a Quad and 0.042720 for a
Penta. And change the weight vector to incorporate the new weight of the bamboo in each
segment.

3. Changing length. To change the action length of the rod is more complex. This is what
seems reasonable to me:

(a) Let AL be the original action length in inches, and AL NEW the desired action length,
which might be shorter or longer.

(b) Calculate N NEW = (AL NEW + 1) * INCREMENT DIVIDER

(c) Scale up the values in the vector XDEF and scale down the values in CURV. Here is the
pseudocode

for I = 2 to N
XDEF_NEW[I] = XDEF[I] * (AL_NEW / AL)

end
for I = 1 to N-1

CURV_NEW[I] = CURV[I] * (AL / AL_NEW)
end

(d) The XDEF NEW and CURV NEW vectors now must be interpolated up or down from N
points to N NEW.

(e) The original taper must be lengthened or shortened to provide the starting dimension
vector.

(f) The WEIGHT vector must be recalculated allowing for the bamboo change and spread
to the N NEW-1 segments

At present, this is marked as being an experimental procedure. The results seem reasonable when
compared to making the same modifications holding constant the Garrison (undeflected) stress
curve. More testing and thinking is required.

10 Additional Topics

10.1 Number of Increments

In his examples, Scully without explanation divides the rod action length into 100 segments for
deflection calculation. In Hexrod I chose to make the divisions smaller: 5 per inch
(INCREMENT DIVISOR=5.) I expect that this may be unnecessary, but computation time is min-
imal. However, experiments show that the resulting deflection values are very close but not
identical for different size divisions. The pattern seems to be one of increasing deflection with
increasing number of segments. Here is the static deflection values for a Payne 200 taper with a
tip weight of 2.00 ounces, under INCREMENT DIVISOR values of 5, 2, and 1. Values are given for
the 0 (tip) and the 10, 30, 50, and 70 inch stations

11

Table 1. Static deflection under alternative division sizes
INCREMENT DIVISOR=5 INCREMENT DIVISOR=2 INCREMENT DIVISOR=1

Station XDEF YDEF CURV XDEF YDEF CURV XDEF YDEF CURV
0 (Tip) 84.307 -32.989 0 84.414 -32.807 0 84.598 -32.499 0

10 80.114 -24.041 0.030381 80.180 -23.843 0.030548 80.291 -23.509 0.03827
30 65.616 -10.798 0.020461 65.555 -10.639 0.020549 65.450 -10.375 0.020693
50 47.167 -3.735 0.009652 47.007 -3.638 0.009655 46.737 -3.478 0.006923
70 27.631 -0.557 0.007051 27.392 -0.520 0.00703 26.990 0.0461 0.06923

I ruled out convergence variablilty by decreasing the TOL. I may investigate this further at some
point. Hard thinking may be necessary.

10.2 Small vs. Large Deflection Calculations

Scully provides alternative algorithms employing both small and large deflection theory. He de-
termined that the small deflection algorithm gave a closer approximation to actual rod deflection.
A Master’s thesis by John Visner, Analytical and Experimental Analysis of the Large Deflection of a
Cantilever Beam Subjected to a Constant, Concentrated Force, With a Constant Angle, Applied at the Free
End (University of Akron, 2007) provides a computer program in Fortran for the solution of the
problem. The program is similar to Scully’s in that it subdivides the beam into many short seg-
ments and reaches its solution by an iterative procedure. Unfortunately the assumptions Visner
builds into his logic, that the beam is of constant dimension and therefore that the curvature is
decreasing monotonically from fixed to free end, make it unsuitable to solve cane rod deflection
problems.

It is possible however the compare Visner’s solutions to Scully’s by considering a hexagonal
rod without any taper. What I found was that Visner’s results are very similar to Scully’s small
deflection algorithm, but deviated from his large deflection solution. What this implies about the
latter I’m not sure, but it gave me more confidence that the algorithm, despite being derived from
small deflection theory, is not totally inappropriate for cane rods.

11 References and Sources

1. This the thread on the Classic Flt Rod Forum which discussed Scully’s thesis and algorithm:
http://classicflyrodforum.com/forum/
viewtopic.php?f=66&t=125933&hilit=deflection&start=0

2. Bennett R Scully (2018) The Effect of Material Variability on the Deflection of Bamboo Fly Rods.
Honors Thesis, University of Maine
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1462&context=honors

3. R.E. Milward (2010) Bamboo: Fact, Fiction and Flyrods - II. Self-published.

4. William Hanneman The Common Cents System. https://www.common-cents.info

5. John C Visner (2007) Analytical and Experimental Analysis of the Large Deflection of a Cantilever
Beam Subjected to a Constant, Concentrated Force, With a Constant Angle, Applied at the Free End
Master of Science Thesis, University of Akron.
https://etd.ohiolink.edu/!etd.send file?accession=akron1196090494&disposition=inline

12

