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1 Purpose

This document shows some important geometric and engineering properties of triangular, hollow
triangular, Evo13 and Evo6 (Tri-Hex) bamboo rod constructions. No doubt these derivations have
been performed by others and may be available from other sources. I simply wanted to do them
myself to satisfy my own curiosity.

Except for the Evo6, which I have the most interest in, there is no consideration of how these
rods can be constructed by the home builder, only the properties determined by their geometrical
cross sections. It is also assumed, for simplicity, that Tonkin cane is a homogeneous material. This
assumption can be relaxed and I may do that at some point.

2 Solid triangular rods

The simplest is a solid rod equilateral in cross section. The neutral axis is one-third the height of
the triangle (= D).
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Figure 1: The triangular rod
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Rod makers typically describe the size of the rod blank by its external dimension(s). I will
denote the dimension by D. In all the graphs D will be set to 1 unit for simplicity, and all other
dimensions and properties as functions of D.

Formulas for the area moment of inertia I are from Roark’s Formulas for Stress and Strain, Ta-
ble 1 section 8.

Table 1. Properties of a solid triangular rod

Measure Calculate

Rod dimension D

Length of external flat (base) B = 1.1547D

Neutral axis Y = 0.3333D from base

Cross Section Area A = 1
2BD = 0.5774D2

Area moment of inertia I = 0.01804B4 = 0.03207D4

3 Hollow triangular rods

The hollow rod section consists of the external triangle (Triangle 1) and the “negative” internal
triangle (2). The uniform wall thickness is denoted by t and is set at 0.15 in the diagram below.
For any wall thickness, the neutral axis is D

3 from the external triangle base.
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Figure 2: The hollow triangular rod
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Table 2. Properties of hollow triangular rod

Measure Calculate

Rod dimension D

Wall thickness t

Height of internal triangle D2 = D − 3t

Area of internal triangle A2 = 0.5774(D − 3t)2

Cross sectional (bamboo) area A1 −A2 = 0.5774(6Dt− 9t2)

Maximum possible wall thickness t = D
3

Neutral axis of internal triangle Y2 = t+ D2
3 = D

3

Area moment of inertia Define: number of sides n = 3

Define: length of base B = 1.1547D

Define: c = t tan(60◦)
B

I = ntB3

8 × (13 + 1
tan2(60◦)

)

×(1− 3c+ 4c2 − 2c3)

The formula for the moment of inertia comes from Roark’s Formulas in Table 1 section 28 for hol-
low regular polygons.

There is an alternative approach to calculating the area moment of a structure composed of
more than one “part”, some of which may be empty or negative like the hollow triangle. It is the
method of composite parts, and requires four quantities for each of the parts: (1) whether the part is
positive (existing material) or negative (hollow); (2) the moment of inertia of each; (2) the neutral
axis of each; and (4) the cross section area of each. This method will be used to calculate the MoI
of the Evo13 and Evo6 rod geometries in the next section.

Using the formulas in Tables 1 and 2 and the values D = 1 and t = 0.15, these are the needed
quantities:

Table 3. Method of composite parts
Measure Outer triangle 1 Inner triangle 2
Contribution Positive Negative
Cross sectional area A1 = 0.5774 A2 = 0.2827

Neutral axis Y1 = 0.3333 Y2 = 0.3333

Area moment of inertia I1 = 0.03207 I2 = 0.00293

The first step is to calculate the neutral axis of the combined parts. The formula is

Yc =

∑
partsAY∑
partsA

(1)

Parts with a negative contribution are treated as it their area is negative. This is basically the aver-
age value of the neutral axis, weighted by area of the parts.
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Since both triangles have a neutral axis of 0.3333, it is obvious that their combination will have
this same composite neutral axis.

Yc =
0.5774× 0.3333− 0.2827× 0.3333

0.5774− 0.2827
= 0.3333

The next step is to apply what is known as the parallel axis theorem. This allows the moment of
inertia of each component to be adjusted so that it is in reference to a new neutral axis.

Ic = I + (Y − Yc)2 ×A (2)

Again, since the combined neutral axis is identical to the original axes of the triangles, there is no
adjustment to be made. The formulas become

I1c = 0.03207 + (0.3333− 0.3333)2 × 0.5774 = 0.3207

I2c = 0.00293 + (0.3333− 0.3333)2 × 0.2827 = 0.00293

The final step is to combine these adjusted inertias, with positive parts added and negative
parts subtracted.

Ic = I1c − I2c = 0.03207− 0.00293 = 0.02914

Generalizing from this example with D = 1 and t = 0.15, the area moment of inertia for a
hollow triangular rod with dimension D and wall thickness t is

Ic = 0.03207(D4 − (D − 3t)4)

which is a simpler formula for I than that in Table 2.

4 Evo13 rods

Starting with the solid triangular rod from Figure 1, subdivide it into 16 smaller equilateral trian-
gles as shown in Figure 3 below. Then by removing the corner triangles 1, 7, and 16, what remains
is the Evo13 rod geometry cross section. In the diagram the rod dimension remains at D = 1 for
comparison. It can be seen that the height of the small triangles will be D

3 .

Table 4 gives the formulas for the important Evo rod structure features. The “outer triangle”
refers to the combined 16 triangles corners included. Its height is 1.333D.

The area moments of inertia for Evo13 rod geometry can be calculated by the method of com-
posite parts used above. The outer triangle is a positive contribution, and the small triangles 1, 7,
and 16 are negative.

The first step is to find the composite neutral axis, following the formula in equation (1) above.
Small triangles 1 and 7 have the same neutral axis so they can be combined in the calculation.

Y Evo13 =
(0.1264D2 × 0.4444D)− 2(0.06415D2 × 0.1111D)− (0.06415D2 × 1.1111D)

(1.0264− 3× 0.06415)D2

= 0.4444D
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Figure 3: Evo13 and Evo6 rod geometries

The neutral axis of the original triangle and the Evo13 structure are identical.

Next, the moments of inertia of the involved triangles are adjusted to reflect the composite
neutral axis by the parallel axis theorem as described in Equation (2).

Table 5. Moments of inertia about the combined neutral axis

Triangle Adjusted I

Outer Iouter = 0.1013D4 + (0.4444D − 0.4444D)2 × 1.0264D2

= 0.1013D4

1 and 7 I1, I7 = 0.000396D4 + (0.1111D − 0.4444D)2 × 0.06415D2

= 0.007522

16 I16 = 0.000396D4 + (1.1111D − 0.4444D)2 × 0.06415D2

= 0.02891D4

Finally, the moments of the four triangles are combined, with the three small triangles sub-
tracted from the outer triangle.

IEvo13 = Iouter − I1 − I7 − I16
= 0.1013D4 − 2× 0.00752D4 − 0.02891D4

= 0.05735D4
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The results are summarized in Table 4.

Table 4. Evo13 rod structure components
Measure Triangle Compute
Height Outer 1.3333D

Small 0.3333D

Evo13 D

Base & Sides Outer 1.3333
sin 60 D = 1.5396D

Small 1
4 × 1.5396D = 0.3849D

Evo13 (max width) 3× 0.3849D = 1.1547D

Cross sectional area Outer A = 1
2 × 1.3333× 1.5396D2 = 1.0264D2

Small As =
1
16 × 1.0264D2 = 0.06415D2

Evo13 AEvo13 = A− 3As = 0.8340D2

Neutral axis Outer Y = 0.3333× 1.3333D = 0.4444D (from base)
Small Ys1 =

1
3 × 0.3333D = 0.1111D when base is on bottom ∧

Ys2 = (13 − 0.1111)D = 0.2222D when base is on top ∨
Evo13 YEvo13 = 0.4444D

Moment of inertia Outer I = 0.03207× (1.3333D)4 = 0.1013D4

Small Is = 0.03207× (0.3333D)4 = 0.0003958D4

Evo13 IEvo13 = 0.05735D4

5 Evo6 rods

5.1 Evo6 rods with flattened enamel sides

Hollowing the Evo13 geometry by removing triangle 10 gives the Evo6 or Tri-Hex geometry. One
feature that is different from other hollow rods is that the size of the hollow, or wall thickness, is
determined by the rod dimension; it is not set independently by the builder. The hollow of the
Evo6 is continuously tapering from tip to butt. When the enamel faces of the involved triangles
are flattened by scraping or sanding, as shown in Figure 3 for the Evo13 construction, I will refer
to this as Evo6core.

Calculation of the moment of inertia is just an extension of the Evo13 calculation by the method
of composite parts; simply subtract the additional triangle. Since triangle 10 also has a neutral axis
of Y 10 = 0.4444D, there is no need to compute a new combined neutral axis and adjust the com-
ponent moments to it.

Note that I am defining the cross sectional area (CSA) as excluding the central (hollow) tri-
angle, as it is used when applying the method of component parts. This is in contrast to some
builders who use AEvo6 as equal to the solid AEvo13.
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Table 6. Additional Evo6 rod structure components
Measure Structure Compute
Cross section area Evo6 AEvo6core = AEvo13 −As = 0.7698D2

Neutral axis Triangle 10 Y 10 =
1
3 + 0.1111 = 0.4444D

Evo6 Y Evo6core = 0.4444D

Area moment of inertia Evo6 IEvo6core = IEvo13 − I10
= 0.05735D4 − 0.0003958D4

= 0.05695D4

5.2 Evo6 rods with unflattened enamel sides

One of the construction advantages of the Evo6 rod is that it can be planed with the same tools
used for a traditional hexagonal rod (hence the name Tri-Hex.) Equilateral triangular strips are
planed for the corner triangles 2, 6, and 14 of figure 3. Then three double-sized equilateral strips
are planed equivalent to the combined triangles 3,4,5, and 10. The apex corresponding to triangle
10 is removed by planing or scraping, leaving three trapezoids which make the sides of the struc-
ture, with the center left hollow.

An issue with the three wide trapezoidal strips (and to a lesser degree with the small corner
strips) is that, to flatten the outer surface, a circle segment of the very densest outer power fibers
must be removed. Leaving the strips with their natural rounded shape will increase the strength
and stiffness of the rod, in other words the area Moment of Inertia.

Figure 4 shows a greatly exaggerated view of the new structure. The additional shaded areas
are called segments of a circle. Assign them the same number as their adjacent triangle or trape-
zoid. The original Evo6 structure, consisting of triangles 1, 2, and 3 and trapezoids 5, 6, and 7 will
be called the core structure, still with dimension D = 1, and the structure with the additional outer
curves the augmented structure. It is important to be clear that, for this paper, the dimension (e.g.
D = 1) of the Evo6 augmented rod is defined by the core structure. This will be taken up again in
section 6.2.

The questions for this section are, if the sides are left unflattened, how will this alter the rod’s
action, and how might the rod dimensions be adjusted to compensate. It is obvious that, if we
leave the core structure the same dimension, we are adding cane to the outer edge of the strips.
The finished dimension of the rod will increase and the rod will become heavier and stiffer. In
order to determine how much the rod will change, we need to focus on some specific measures.
I will look at two: the cross sectional area (CSA) for a measure of size and weight, and the area
moment of inertia (MoI), a measure of the stiffness of the structure. More complex measures such
as stress and deflection I may investigate in the future.

We will start with some items needed for calculations. Figure 5(a) is from Roark’s Formulas
Table 1 section 19. Figure 5(b) shows the final augmented equilateral strip which will result from
planing. The height of the triangular part of strip 4ABG is h = FG which is h = 1

3D for the
narrow planed triangular strips (1, 2, and 3) or h = 2

3D for the wide strips (5, 6, and 7). The height
of augmented part is e = EF , which can be determined along with other quantities once the angle
α is determined.
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Figure 4: Evo6 geometry showing rounded strip outer surfaces

Starting with 5(a), the radius of the circle, which is the radius of the bamboo culm, is R. The
subtended angle to the center of the culm cross section is θ = 2α, which will be in radians for
the calculations that follow. 1–1 and 2–2 are the principal axes of the segment; when oriented as
shown (i.e. attached to triangle 3), axis 1–1 is the neutral axis and the intersection of 1–1 and 2–2
is the segment centroid. In this orientation, the moment of inertia as part of the rod is at its max-
imum and will be less when rotated to another orientation. Table 7 gives formulas for the basic
components of the segment, from Roark’s.

Table 7. Circle segment components

Measure Roark’s formula

Cross Section Area A = 2
3R

2α3(1− 0.2α2 + 0.019α4)

Axis 1 from outside y1a = 0.3Rα2(1− 0.0976α2 + 0.0028α4)

Axis 1 from inside y1b = 0.2Rα2(1− 0.0619α2 + 0.0027α4)

Axis 2 from corner y2 = Rα(1− 0.1667α2 + 0.0083α4)

Moment of inertia wrt Axis 1 I1 = 0.01143R4α7(1− 0.3491α2 + 0.0450α4)

Moment of inertia wrt Axis 2 I2 = 0.1333R4α5(1− 0.4762α2 + 0.1111α4)

In order to utilize these formulas it is necessary to determine α from the two initial values culm
radius R and rod dimension D. The first step is to determine the length of the chord AB, which is
the length of a side of the equilateral triangle. This length is s = h

cos 30◦ . Substituting the formula(s)
for h as a function of D results in s = 0.3849D for the narrow strips and s = 0.7698D for the wide.
The formula for the subtended angle θ (in radians) is θ = 2arcsin( s

2R) and α = 1
2θ.

8



2

2

1 1

y1by2

y1a

R

α α

(a) (b)

A

E

B
F

G

e

h

Figure 5: Components of the segment of a circle

The final equations for α for the narrow and wide strips become

for narrow strips α = arcsin(
0.3849D

2R
) (3)

for wide strips α = arcsin(
0.7698D

2R
) (4)

With α and R the circle segment components in Table 7 can be computed. The height of the aug-
mented area will be e = y1a + y1b.

Before calculating the values of y1a and y1b from Table 7, it is insightful to dissect the equations
a little. The for the relatively small values ofαwe are dealing with, the second term (1−c1α2+c2α

4)
is very close to 1.0, typically 0.999 to three decimal places. If we ignore this multiplier, the total
height of the augmented section is

e = y1a + y1b ≈ 0.5Rα2 (5)

While the angle α doubles for the wide strips compared to narrow, the total height of the aug-
mented addition is 4 times larger in the wide strips. This simplification can be used in the calcu-
lations without loss of practical precision.

The additional CSA of the augmented structure is calculated directly from Roark’s formula
in Table 7. In order to calculate the moment of inertia of the augmented structure, the method
of component parts will again be used. The moments of the six augmented circle segments can
be combined with the moment of the core, as given in Table 6. But first the moments I1 and I2
of the generic segment shown in Figure 5 must be adjusted for the six strip rotations pictured in
Figure 4, and the neutral axis of the rotated segments calculated. This can be accomplished by a
computational tool known as Mohr’s Circle which can be found in mechanical engineering texts or
online. The neutral axis of the augmented Evo6 structure remains at 0.4444D, which simplifies the
calculations.
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Tables 8A and 8B show what happens to CSA and MoI when the structure changes from flat-
tened enamel to augmented, assuming a typical culm size of R=1.25 inches. The first two columns
give the dimensions and CSA/MoI assuming flattened enamel; the next two assume the enamel
is not flattened while the rod core dimension remains the same. The change column gives the
relative increase in CSA/MoI with the addition of the outer augmentation. Logically this change
becomes relatively larger as rod dimension increases, and the affect on MoI is larger than on CSA.
If we would build two rods with same core dimensions, one with flattened enamel and the other
augmented, the later would be considerably stiffer in the butt region. The final two columns show
what the rod dimensions would be, both core and augmented, to arrive at a rod with the same
CSA or MoI as the original flattened rod. These results are only for the specified culm radius of
1.25 inches. Intuitively, the smaller the culm radius, the more “curvature” to the outer surface of
the augmented strips, and the greater the effect on CSA and MoI.

Table 8A. Affect of Evo6 augmentation on CSA, R=1.25
Flattened Augmented Dim to make equal

Dcore CSA Daug CSA CSA Chg Dcore Daug

0.050 0.001924 0.0502 0.001937 +0.67% 0.0499 0.0500
0.100 0.007698 0.1007 0.007801 +1.33% 0.0994 0.1000
0.150 0.01732 0.1517 0.01767 +2.00% 0.1487 0.1500
0.200 0.03079 0.2030 0.03161 +2.67% 0.1977 0.2000
0.250 0.04811 0.2546 0.04972 +3.34% 0.2464 0.2500
0.300 0.06928 0.3067 0.07206 +4.01% 0.2954 0.3000
0.350 0.09430 0.3591 0.09872 +4.68% 0.3413 0.3501

Table 8B. Affect of Evo6 augmentation on MoI, R=1.25
Flattened Augmented Dim to make equal

Dcore MoI Daug MoI MoI Chg Dcore Daug

0.050 3.593e-7 0.0502 3.559e-7 +0.95% 0.0499 0.0501
0.100 5.695e-6 0.1007 5.804e-6 +1.91% 0.0995 0.1003
0.150 2.883e-5 0.1517 2.966e-5 +2.89% 0.1489 0.1506
0.200 9.112e-5 0.2030 9.465e-5 +3.87% 0.1981 0.2010
0.250 2.224e-4 0.2536 2.333e-4 +4.87% 0.2471 0.2516
0.300 4.613e-4 0.3067 4.884e-4 +5.88% 0.2958 0.3023
0.350 8.546e-4 0.3591 9.137e-4 +6.91% 0.3443 0.3531

A note on the calculation of the last two columns. There might be an equation or set of equa-
tions that will give these results, but I did not seek it. I solved it by an iterative process that
involved finding the ratio of flattened CSA (or MoI) to augmented, and using this to calculate an
adjustment factor for the sizes of the triangles involved, the resulting angles and the components
of Table 7. Two iterations were all that was required to get practical convergence.
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6 Taper conversion

6.1 Conversion formulas

In this final section I will give the formulas for converting a taper from a traditional solid flat-sided
hexagonal rod to the three Evo rods: Evo13, Evo6 core and Evo6 augmented. There is no reason
that tapers for a new rod geometry needs to be derived from an existing tapers, but it is often a
convenient place to start. A new rod geometry will, hopefully, have unique characteristics that
can by taken advantage of by new tapers.

Two conversion methods area equal cross sectional area, which is equivalent to equal weight
at each point along the taper, and equal moment of inertia, which is equivalent to equal stiffness
and, therefore, equal static deflection. Other methods such as equal stress or casting deflection are
not considered here but are possible.

The basic method is simple: equate the formula for cross sectional area (or MoI) for a hexago-
nal rod structure of dimension Dhex to that for a Evo rod of dimension e.g. DEvo6core; then solve
the equation for DEvo6core in terms of Dhex. The user then can take dimension values from the
hexagonal rod and use this equation to compute the dimension value for a triangular rod. The
same general approach works between other rod structures. Here is an example for cross sec-
tional area that illustrates the idea:

0.8340D2
Evo13 = 0.8660D2

hex

DEvo13 =

√
0.8660

0.8340
D2

hex

= 1.019Dhex

To convert from Hex to Evo6 augmented, the first step is to convert to the Evo6 core dimensions
For example, consider the formula to convert from a hex to an Evo6 core taper by equal MoI:

0.05695D4
Evo6core = 0.06014D4

hex

DEvo6core =
4

√
0.06014

0.05695
Dhex

= 1.01372Dhex

Then to get the augmented rod dimensions, the same iterative process that was used to calculate
the values in the “Dim to make equal” columns of Tables 8A and 8B needs to be applied. If you
notice the near-equivalence of values in the firstDcore and lastDaug columns, however, you would
be justified in skipping this step and simply using the Evo6 core formula above, unless your culms
are unusually small or your rod dimensions large (e.g. a two-handed rod). This might not hold
for translation from a quad or penta taper to triangular; I have not tried it. In the next section on
planing form settings more details emerge, however. This result is assumed in Table 9 below.
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Table 9. Conversion formulas from hex dimensions

Equivalent Formula
Cross section area Evo 13 DEvo13 = 1.0190Dhex

Evo 6 core DEvo6core = 1.0606Dhex

Evo 6 augmented DEvo6aug = 1.0606Dhex for typical size culm
Moment of Inertia Evo 13 DEvo13 = 1.0120Dhex

Evo 6 core DEvo6core = 1.0137Dhex

Evo 6 augmented DEvo6aug = 1.0137Dhex for typical size culm

6.2 Planing form settings

Planing form settings for Evo13 and Evo6 core structures, in other words those with flattened
enamel surfaces, are straightforward. For Evo13 they are 1

3DEvo13, and for Evo6 core the narrow
strips for the corners are also 1

3DEvo6core and the wide strips which are destined to be trapezoids
are 2

3DEvo6core.

(A) Form setting s=h+e (B) Form setting s=h

e

h

h

e

h

h

Figure 6: Planing form settings for unflattened surface

For the Evo6 augmented structure, things become a bit more complicated, as can be seen in
Figure 6. (The curved culm surface is greatly exaggerated for illustration.) If we set the form to
the Evo6 core numbers from Table 9, the situation is as seen in the right. While part of the outer
power fibers will be included in the final planed strip, some will be planed away, along with part
of core equilateral triangle. To determine the correct setting, start with 1

2 and 2
3 of the DEvo6core

value, and then add the height of the augmented region e = y1a + y1b from Table 7 above; thus it
depends on the angle α which itself depends on R and DEvo6 as seen in equations (3) and (4). In
other words, the iterative process described on page 10 needs to be used. If desired, calculation of
e can be shortened to e = 0.5Rα2 without loss of practical precision.

Table 9 gives values of e for different core strip heights. Depending on how you are arriving at
your taper, these might be useful for setting your forms to allow for the augmentation.
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Table 9. Augmented section height e
Core Strip Culm Radius

Height 0.75 1.0 1.25 1.5 1.75
0.025 0.0001 0.0001 0.0001 0.0001 0.0001
0.050 0.0006 0.0004 0.0003 0.0003 0.0002
0.075 0.0012 0.0009 0.0008 0.0006 0.0005
0.100 0.0022 0.0017 0.0013 0.0011 0.0010
0.125 0.0035 0.0026 0.0021 0.0017 0.0015
0.150 0.0050 0.0037 0.0030 0.0025 0.0021
0.175 0.0068 0.0051 0.0041 0.0034 0.0029
0.200 0.0089 0.0067 0.0053 0.0044 0.0038
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