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1 Purpose

This paper is a quick reference guide to some common geometric and trigonometric calculations
used in the design and building of split cane rods. Nothing here is new or advanced in any way,
but it may save you doing the derivations and calculations from scratch. Four, five and six sided
rods are considered.

I have checked the derivations and calculations by doing each twice, but it is possible that I made
the same mistake twice. If you find a problem PLEASE let me know so it can be corrected or
improved.

2 Basics

Rods are constructed of four, five or six strips that are equilateral or isosceles triangles in cross
section. For geometric calculations I find it most convenient to consider each cross section to be
composed of two identical right triangles with known angles. From a right triangle with known
angles and known length of one side, it is posible to find the other lengths by simple trigonometry.
This will be my method. There might be more than one formulation and solution of some of the
problems. The right triangles and their angles are shown in Figure 1.
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Figure 1: Rod geometries and associated right triangles

The basic taper measurement is the dimension D at a station. For the hexagonal and quadrate
constructions, the dimension is from flat to flat; for pentagonal it is from flat to apex. From D and
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opposite (O)

adjacent
(A)

hypotenuse
(H)

θ

90° − θ

Table 1. Basic trig functions

sin θ = opposite
hypotenuse = O

H

cos θ = adjacent
hypotenuse = A

H

tan θ = opposite
adjacent = O

A

the right triangle, most of the basic quantities can be derived.

Figure 2: Right triangle and associ-
ated trig functions

Table 2. Trig function values for useful angles

Degrees Radians sin 1/sin cos 1/cos tan 1/tan

18 π
10 (0.3142) 0.3090 3.2361 0.9511 1.0515 0.3249 3.0777

30 π
6 (0.5236) 0.5000 2.0000 0.8660 1.1547 0.5774 1.7321

36 π
5 (0.6283) 0.5878 1.7013 0.8090 1.2361 0.7265 1.3764

45 π
4 (0.7854) 0.7071 1.4142 0.7071 1.4142 1.0000 1.0000

54 3π
10 (0.9425) 0.8090 1.2361 0.5878 1.7013 1.3764 0.7265

60 π
3 (1.0072 0.8660 1.1547 0.5000 2.0000 1.7321 0.5774

72 2π
5 (1.2556) 0.9511 1.0575 0.3090 3.2361 3.0777 0.3249

90 π
2 (1.5708) 1.0000 1.0000 0.0000 ∞ ∞ 0.0000

3 Strip and rod dimensions

The information in the section above lets us derive basic results about the dimensions of the rod
and component strips in terms of the rod dimension D. When describing strips, the term enamel
refers to the middle of the outside surface, apex refers to the point where the planed surfaces meet
at the center of the rod (opposite the enamel), and corner refers to the point where the enamel
meets the planed side. A, O and H refer to the length of the adjacent, opposite and hypotenuse
sides of the right triangle in Figure 2. Table 3 is on the following page.
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Table 3. Strip and rod measurements

Geometry Measure Formula Compute

Hexagonal Right triangle sides A = D
2 0.5D (1)

H = D
2 cos 30 0.5774D (2)

O = tan 30
2 D 0.2887D (3)

Strip enamel→ apex A = D
2 0.5D (4)

Strip corner→ apex H = D
2 cos 30 0.5774D (5)

Strip corner→ corner 2O = D
2 cos 30 0.5774D (6)

Rod corner→ corner 2H = D
cos 30 1.1547D (7)

Pentagonal Right triangle sides A = (1− 1
1+cos 36)D 0.4472D (8)

(D = A+H) H = D
1+cos 36 0.5528D (9)

O = sin 36
1+cos 36D 0.3249D (10)

Strip enamel→ apex A = (1− 1
1+cos 36)D 0.4472D (11)

Strip corner→ apex H = D
1+cos 36 0.5528D (12)

Strip corner→ corner 2O = 2 sin 36
1+cos 36D 0.6498D (13)

Rod corner→ corner 4 sin 36 cos 36
1+cos 36 D 1.0515D (14)

Quadrate Right triangle sides A = D
2 0.5D (15)

H = D
2 cos 45 0.7071D (16)

O = D
2 0.5D (17)

Strip enamel→ apex A = D
2 0.5D (18)

Strip corner→ apex H = D
2 cos 45 0.7071D (19)

Strip corner→ corner 2O = D D (20)

Rod corner→ corner 2H = D
cos 45 1.4142D (21)
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4 Strip angles from dimensions

The situation can arise during planing when things go amiss and we need to determine the actual
angles at a station. Mike McGuire shared the formulas to solve for the angles from the dimensions
of the strip. In Figure 3 below,A,B andC are the unknown angles of the verticies; a, b and c are the
sides opposite those verticies, and ha, hb and hc are the triangle altitudes, the distance measured
with a micrometer or caliper from the side to the opposite vertex. Using formulas for triangle area
and the Law of Cosines, Table 4 gives the resulting formulas involving the arccos function; you
will need a scientific calculator or computer spreadsheet to complete the calcuations.

A

B

C
hc

hb

ha

a

b

c

Table 4: Angles from dimensions

Angle Formula

A arccos(
1+(

hb
hc

)2−(
hb
ha

)2)

2
hb
hc

)

B arccos(
1+(ha

hc
)2−(ha

hb
)2)

2ha
hc

)

C arccos(
1+(ha

hb
)2−(ha

hc
)2)

2ha
hb

)

Figure 3: Strip angles, sides and al-
titudes

5 Planing form settings

Determining the planing form depth for hexagonal rods is of course trivial. For pentagonal and
quadrate rods, there are two alternative measures by which planing form settings are described.
First is the depth of the groove; in tFigure 4 below for a penta, this is the value P . It is the microm-
eter measurement from one planed surface to the corner where the enamel meets the opposite
planed side. Second is the length of the diagonal marked A in the diagram, which is the same as
A in Figure 2. This is the micrometer measurement from the center of the enamel to the opposite
corner where the planed surfaces meet. MeasurementA is probably easier to execute at the bench.
For hexagonal rods, P and A are identical.

Probably very few rod builders hand plane strips for pentagonal or quadrate rods in traditional
adjustable forms; a Morgan hand mill or powered mill is more typical. For penta and quad forms
use the following figure and table for P or A. The diagram is for one of the mirror image grooves
on a pentagonal form. The strip side dimensions H , A and 2O refer back to the right triangle
diagram in Figure 2.
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Table 5: Planing form settings

Geometry Formula Compute

Hexagonal P = D
2 0.5D

A = D
2 0.5D

Pentagonal P = D sin 72
1+cos 36 0.5257D

A = (1− 1
1+cos 36)D 0.4472D

Quadrate P = D
2 cos 45 0.7071D

A = D
2 0.5D

Figure 4: Planing form settings;
half of pentagonal form pictured

5.1 George Barnes method

Unlike hexagonal forms, indicator points for penta and quad forms are uncommon. An alterna-
tive method of setting the forms using a dial indicator and a short length of drill rod was given
by George Barns in an article “Setting Tapers in Forms” in The Planing Form issue 39 (May/June
1996). In the table below, Q is the diameter of the drill rod and M is the amount the rod sits proud
of the form. (It is assumed that the drill rod is large enough to sit proud of the forms.) To use these
formulas replace A with its formula in terms of D from Table 3, substituting the known values of
D and Q, and solving for M .

Table 6: Barnes formulas for planing form setting

Hexagonal A = 1.5Q−M

Pentagonal A = 1.3507Q− 0.8507M

Quadrate A = 0.7071(1.07071Q−M)

6 Ferrule size

For fitting premade metal ferrules, it is useful to know the diameters of the inside incircle and out-
side circumcircle. Calculation of the radius (and diameter) of these circles is straightforward from
the triangles shown in Figures 1 and 2. The radius of the incircle is length of the adjacent side (A)
and the circumcircle is the length of the hypotenuse (H). Multiply these by two to get ferrule size
F and convert to 64-ths to see the options.

5



circumcircle

incircle

Table 7: Ferrule size calculations

Diameter

Geometry Circle diameter Formula Compute

Hexagonal Incircle 2A = D D

Circumcircle 2H = D
cos 30 1.1547D

Pentagonal Incircle 2A = (2− 2
1+cos 36)D 0.8944D

Circumcircle 2H = 2D
1+cos 36 1.1056D

Quadrate Incircle 2A = D D

Circumcircle 2H = D
cos 45 1.4142D

Figure 5: The incircle and circum-
circle of a pentagon

7 Cross sectional area

The cross sectional area at a station can be calculated from formulas for regular polygons, or more
easily for us, from the right triangles in Figures 1 and 2. The area of a triangle is 1

2 × base× height
where base is the side opposite (O) and height is the side adjacent (A). Values of A and O in terms
of dimension D are from Table 3.

Table 8: Cross sectional area

Geometry Formula Compute

Hexagonal Area = 12× 1
2 ×

D tan 30
2 × D

2 0.8660D2

Pentagonal Area = 10× 1
2 ×

D sin 36
1+cos 36 × (1− 1

1+cos 36)D 0.7265D2

Quadrate Area = 8× 1
2 ×

D
2 ×

D
2 D2

7.1 Converting geometries

One method of converting tapers between different geometries (not necessarily the best) is to
equate the cross sectional areas at each station. This comes down to a simple dimension multiplier.

Table 9: Multipliers to convert geometries by equal cross section

To geometry

From Geometry Hex Penta Quad

Hexagonal - 1.0918 0.9306

Pentagonal 0.9159 - 0.8523

Quadrate 1.0746 1.1732 -
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7.2 Volume and weight

Garrison gives the formula for a tapered section of hexagonal cane rod; in geometric terms a fus-
trum. It depends on the length of the section L and the areas of the two ends (from Table 8 above).
The same general formula applies to all geometries:

V olume = L
3 (Area1 +Area2 +

√
Area1 ×Area2)

If we need to compute the volume of a short section of a cane rod (say one inch), where the differ-
ence in the areas of the two ends is very small, we area able to simplify our calculations because
the area term above is approximately equal to 3× average area. The approximate volume becomes
just the average area of the two ends times the length L.

D1

D2

L

V olume ≈ Area1+Area2
2 × L

Figure 6: Approximate volume of a rod segment

To compute the weight of the section, it is typical to use Garrison’s calculated value of 0.668
ounces per cubic inch, but of course other values may be appropriate. The weight of the cane rod,
usually for one inch sections, is used in Garrison’s stress calculations.

8 Dimension increase due to glue lines

The glue lines will add to the dimension of the finished rod. Each rod geometry leads to a different
amount of increase, depending on the number of glue lines and the angles at which they occur.
Ray Gould measured a typical glue line and found a nominal thickness of 0.001 inch. (Gould
(2005) Cane Rods: Tips & Tapers, page 33.) He shows the trig leadings to the result that, for a
hexagonal rod, the total dimension inflation is five times the glue line thickness, or typically about
0.005 inches.

Figure 7 shows the angles (θ) at which the glue lines are crossed. The effective thickness of the
glue line is T = G

sin θ where G is the nominal glue line thickness.

30

30

90 G

Tθ
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Figure 7: Angles of glue lines

Fortunately, Gould’s results are incorrect. Mike McGuire shows that examination of a diagram
with (very) exagerated glue lines leads quickly to the correct answer.

A

B

G

A

B

A

B

Figure 8: Geometry of glue lines

Starting with the hexaginal cross section, the distance between the strip apexes A and B is the glue
line inflation. This is the height of the four stacked shaded triangles in the center. Each triangle
has a height of 1

2 the glue line thickness G. So the total inflation is 2×G. The quad and pentagonal
cross sections require a little trig to solve: the quad is 2× 1

sin 45 ×
1
2G and the penta is 1+cos 36

2 sin 36 ×G
(which is just an application of the formula from Table 3 line (13)).

What was wrong with Gould’s analysis? The total thickness of the glue lines crossed in the
hexagon of Figure 8 is correct at 5G, but the glue is also separating the strips on the side, pushing
the two left strips and the two right in opposite directions. So while there is 5G of glue, there is
3G less cane.

Table 9: Glue line dimension inflation

Geometry Formula Compute

Hexagonal 4× 1
2 ×G 2G

Quadrate 2× 1
sin 45 ×

1
2G 1.4142G

Pentagonal 1+cos 36
2 sin 36 ×G 1.5388G

9 Moments of Inertia

The moment of inertia is the stiffness of a body due to its size and shape. In our case, the shape is
the rod geometry and the size is the rod dimension at a point. It is used in calculating the stiffness
and deflection of rods. The general formula is I = a ×D4 where a is a constant that depends on
the shape.
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Roark’s Formulas for Stress & Strain, Table 1 section 27 gives a general formula for computing
I . Referring back to Figure 2, the the formula involves the length of the sides H and O and the
area of the whole cross section A (see Table 8).

I = 1
24A(6H

2 − 4O2)

Table 11 gives the moment of inerta in terms of rod dimension D:

Table 10. Moments of inertia

Geometry Compute

Hexagonal 0.060141D4

Pentagonal 0.042716D4

Quadrate 0.083333D4

9.1 Dimension Conversion

These moment of interia formulas can be used to convert dimensions between geometries by
equating their stiffness at each point along the rod. For example, to convert a hexagonal to a
pentagonal rod, solve the formula for Dpenta in terms of Dhex:

0.049839D4
penta = 0.060641D4

hex

Dpenta = 4

√
0.060131
0.042716Dhex

Dpenta = 1.089332Dhex

This leads to the following multipliers to convert between geometries. If your goal is a rod of new
geometry which casts like the original, conversion by equal stiffness is generally advised over
equal cross sectional areas from Table 9.

Table 12: Multipliers to convert geometries by equal stiffness

To geometry

From Geometry Hex Penta Quad

Hexagonal - 1.0893 0.9217

Pentagonal 0.9180 - 0.8461

Quadrate 1.0850 1.1818 -

Mike McGuire has a paper Dimension Compensation for Hollowing Bamboo Rods on his web-
site that applies the equal stiffness calculations to hollowing.
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